Warning: file_put_contents(aCache/aDaily/post/database_info/--): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Базы данных (Data Base) | Telegram Webview: database_info/1478 -
Telegram Group & Telegram Channel
Антипаттерн: N+1 запросов и как его избежать

Что такое N+1?
При выборке связанных данных ORM (или вручную) сначала делается 1 запрос за основными записями, а потом N дополнительных — по одной для каждой записи, чтобы получить связанные объекты. Например, получить 10 пользователей и для каждого — список их заказов ⇒ 1 запрос к users + 10 запросов к orders. 🚩


# SQLAlchemy-пример “N+1”:
users = session.query(User).all() # 1 запрос
for u in users:
print(u.orders) # для каждого пользователя — отдельный запрос


Почему плохо?

🔹 Высокая нагрузка на базу: запросы “в тоненькую” вместо одного “тяжелого”.
🔹 Задержки сети: множество раунд-трипов увеличивает время ответа.
🔹 Масштабируемость страдает: при росте N время растёт линейно.

Как победить N+1

1. Eager loading (предварительная загрузка)
Загрузка связей сразу вместе с основными объектами.


# SQLAlchemy, joinedload — делает JOIN и подтягивает данные сразу
from sqlalchemy.orm import joinedload

users = session.query(User).options(joinedload(User.orders)).all()
for u in users:
print(u.orders) # не генерирует дополнительных запросов


Сокращает число запросов до 1.

2. Batch loading (групповые запросы)
Если JOIN приводит к дублированию полей, можно сделать два запроса:


-- 1: получить user_id
SELECT id FROM users WHERE active = true;
-- 2: получить все заказы для этих пользователей
SELECT * FROM orders WHERE user_id IN (...список id...);


Баланс между сложностью и производительностью.

3. DataLoader / кеширование
В GraphQL и приложениях на Node.js часто используют DataLoader:

🔹 Собирает все ключи за тиковый цикл
🔹 Делает один общий запрос
🔹 Раздаёт результаты обратно

4. Правильное проектирование API
— Предусматривайте, какие связи нужны на фронтенде, и загружайте их сразу.
— Разделяйте endpoints: если нужны только пользователи без заказов — делайте лёгкий запрос.

Best practices & подводные камни

🔹 EXPLAIN ANALYZE для проверки плана: убедитесь, что JOIN-ы и IN (…) не приводят к полному сканированию таблиц.
🔹 Пагинация: всегда ограничивайте выборку через LIMIT/OFFSET или курсоры.
🔹 Будьте осторожны с joinedload на “много ко многим” — может раздувать размер результата.

Сохрани этот пост, чтобы не забыть, и поделись с коллегами!
А у тебя были случаи, когда N+1 съедал всю производительность? Как борешься?

#db

👉 @database_info



tg-me.com/database_info/1478
Create:
Last Update:

Антипаттерн: N+1 запросов и как его избежать

Что такое N+1?
При выборке связанных данных ORM (или вручную) сначала делается 1 запрос за основными записями, а потом N дополнительных — по одной для каждой записи, чтобы получить связанные объекты. Например, получить 10 пользователей и для каждого — список их заказов ⇒ 1 запрос к users + 10 запросов к orders. 🚩


# SQLAlchemy-пример “N+1”:
users = session.query(User).all() # 1 запрос
for u in users:
print(u.orders) # для каждого пользователя — отдельный запрос


Почему плохо?

🔹 Высокая нагрузка на базу: запросы “в тоненькую” вместо одного “тяжелого”.
🔹 Задержки сети: множество раунд-трипов увеличивает время ответа.
🔹 Масштабируемость страдает: при росте N время растёт линейно.

Как победить N+1

1. Eager loading (предварительная загрузка)
Загрузка связей сразу вместе с основными объектами.


# SQLAlchemy, joinedload — делает JOIN и подтягивает данные сразу
from sqlalchemy.orm import joinedload

users = session.query(User).options(joinedload(User.orders)).all()
for u in users:
print(u.orders) # не генерирует дополнительных запросов


Сокращает число запросов до 1.

2. Batch loading (групповые запросы)
Если JOIN приводит к дублированию полей, можно сделать два запроса:


-- 1: получить user_id
SELECT id FROM users WHERE active = true;
-- 2: получить все заказы для этих пользователей
SELECT * FROM orders WHERE user_id IN (...список id...);


Баланс между сложностью и производительностью.

3. DataLoader / кеширование
В GraphQL и приложениях на Node.js часто используют DataLoader:

🔹 Собирает все ключи за тиковый цикл
🔹 Делает один общий запрос
🔹 Раздаёт результаты обратно

4. Правильное проектирование API
— Предусматривайте, какие связи нужны на фронтенде, и загружайте их сразу.
— Разделяйте endpoints: если нужны только пользователи без заказов — делайте лёгкий запрос.

Best practices & подводные камни

🔹 EXPLAIN ANALYZE для проверки плана: убедитесь, что JOIN-ы и IN (…) не приводят к полному сканированию таблиц.
🔹 Пагинация: всегда ограничивайте выборку через LIMIT/OFFSET или курсоры.
🔹 Будьте осторожны с joinedload на “много ко многим” — может раздувать размер результата.

Сохрани этот пост, чтобы не забыть, и поделись с коллегами!
А у тебя были случаи, когда N+1 съедал всю производительность? Как борешься?

#db

👉 @database_info

BY Базы данных (Data Base)




Share with your friend now:
tg-me.com/database_info/1478

View MORE
Open in Telegram


Базы данных Data Base Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Базы данных Data Base from us


Telegram Базы данных (Data Base)
FROM USA